15 research outputs found

    Damping of piezoelectric MEMS oscillators – fundamentals and applications

    Get PDF
    A limiting parameter for the performance of micromechanical oscillators is the damping induced by the surrounding medium. In this work, the damping losses of micromechanical oscillators with piezoelectric actuation and detection are investigated in nine different gas atmospheres over a pressure range of six decades. In addition, the influence of the distance to a spatial boundary is examined, covering a range from narrow gaps with squeeze film damping to an almost freely oscillating structure. This reveals a superposition of four different damping mechanisms, which occur in varying strength depending on pressure, distance and eigenmode. Using an analytical approach, the individual damping phenomena can be separated from each other and subsequently evaluated in a targeted manner. Based on these results, new insights are gained for the molecular flow regime as well as the transitional flow regime, which include the impact of the number of active degrees of freedom of the gas molecules as well as thermal resonance effects. In addition, an electrical equivalent circuit was designed for the entire measurement range, which shows very good agreement with the experimental data. Finally, the damping effects are exploited for applications in sensor technology and a wide range pressure sensor using the nonlinear regime of the oscillators as well as a concept for the measurement of the oxygen concentration are presented.Eine fĂŒr die LeistungsfĂ€higkeit mikromechanischer Oszillatoren limitierende GrĂ¶ĂŸe stellt die DĂ€mpfung durch das umgebende Medium dar. In dieser Arbeit werden daher die DĂ€mpfungsverluste mikromechanischer Oszillatoren mit piezoelektrischer Anregung und Detektion in neun verschiedenen GasatmosphĂ€ren ĂŒber einen Druckbereich von sechs Dekaden untersucht. ZusĂ€tzlich wird der Einfluss des Abstandes zu einer rĂ€umlichen Begrenzung betrachtet und dabei ein Bereich von engen Spalten mit Squeeze Film DĂ€mpfung bis hin zu fast frei schwingenden Strukturen untersucht. Dabei ergibt sich eine Überlagerung von vier verschiedenen DĂ€mpfungsmechanismen, welche in AbhĂ€ngigkeit von Druck, Abstand und Eigenmode in unterschiedlich starker AusprĂ€gung auftreten. Durch einen analytischen Ansatz lassen sich die einzelnen DĂ€mpfungsphĂ€nomene voneinander separieren und in der Folge gezielt auswerten. Anhand dieser Ergebnisse wurden fĂŒr den molekularen sowie den Übergangsbereich neue Erkenntnisse gewonnen, welche die Anzahl aktiver Freiheitsgrade der GasmolekĂŒle sowie thermische Resonanzeffekte miteinbeziehen. DarĂŒber hinaus wurde fĂŒr den gesamten Messbereich ein elektrisches Ersatzschaltbild konzipiert, das eine sehr gute Übereinstimmung mit den experimentellen Daten zeigt. Abschließend werden die DĂ€mpfungseffekte fĂŒr Anwendungen in der Sensorik erschlossen und ein Mehrbereichsdrucksensor mit Hilfe des nichtlinearen Bereichs der Oszillatoren sowie ein Konzept zur Messung des Sauerstoffgehaltes prĂ€sentiert.German Research Foundation (DFG

    Generalized Damping Model for MEMS Oscillators from Molecular to Viscous Flow Regime

    Get PDF
    In this study, we investigate the damping phenomena acting on piezoelectrically driven MEMS oscillators. Three different geometrical shapes of MEMS oscillators are presented, including cantilevers, bending oscillators, and paddle oscillators. An analytical model for their resonance frequencies is derived. The bending modes of these micro-oscillator structures are characterized regarding their resonance frequency and their quality factor as a function of the ambient pressure in a nitrogen atmosphere as well as the dependence on the distance to a neighboring plate representing a geometrical boundary (e.g., to the package or to the mounting). The investigations cover a pressure range from 10−3 mbar up to 900 mbar and a gap width from 150 ”m to 3500 ”m. Consequently, a Knudsen number range over six orders of magnitude from 100 to 10−4 is covered. The measurement data are evaluated with a generalized damping model consisting of four parts representing the individual damping mechanisms (intrinsic, molecular, transitional, and viscous). The evaluated parameters are analyzed as a function of the resonance frequency and the gap width. The data reveal an exponential growing saturation behavior, which is determined by two characteristic lengths, being correlated with the viscous and the thermal boundary layer thickness, respectively. This leads to an estimation of the strength and of the range of the damping effect just by calculating the boundary layer thicknesses given by the resonance frequency and the gas properties. From these results, we gain fundamental insights on the viscous and transitional damping mechanisms as well as on the intrinsic losses. In conclusion, a basic concept is provided to reduce the damping of micro-oscillator bending modes and thus increase the quality factor. Additionally, the results are supported by finite element simulations revealing the temperature and pressure distribution within the gap

    Using the Nonlinear Duffing Effect of Piezoelectric Micro-Oscillators for Wide-Range Pressure Sensing

    Get PDF
    This paper investigates the resonant behaviour of silicon-based micro-oscillators with a length of 3600 ”m, a width of 1800 ”m and a thickness of 10 ”m over a wide range of ambient gas (N2 ) pressures, extending over six orders of magnitude from 10−3 mbar to 900 mbar. The oscillators are actuated piezoelectrically by a thin-film aluminium-nitride (AlN) layer, with the cantilever coverage area being varied from 33% up to 100%. The central focus is on nonlinear Duffing effects, occurring at higher oscillation amplitudes. A theoretical background is provided. All relevant parameters describing a Duffing oscillator, such as stiffness parameters for each coverage size as well as for different bending modes and more complex modes, are extracted from the experimental data. The so-called 2nd roof-tile-shaped mode showed the highest stiffness value of −97.3·107 m−2 s −2 . Thus, it was chosen as being optimal for extended range pressure measurements. Interestingly, both a spring softening effect and a spring hardening effect were observed in this mode, depending on the percentage of the AlN coverage area. The Duffing-effect-induced frequency shift was found to be optimal for obtaining the highest pressure sensitivity, while the size of the hysteresis loop is also a very useful parameter because of the possibility of eliminating the temperature influences and long-term drift effects of the resonance frequency. An reasonable application-specific compromise between the sensitivity and the measurement range can be selected by adjusting the excitation voltage, offering much flexibility. This novel approach turns out to be very promising for compact, cost-effective, wide-range pressure measurements in the vacuum range

    Capillary-Driven Pumping for Passive Degassing and Fuel Supply in Direct Methanol Fuel Cells

    Get PDF
    Abstract In this paper we present a new concept of creating and using capillary pressure gradients for passive degassing and passive methanol supply in direct methanol fuel cells (DMFCs). An anode flow field consisting of parallel tapered channels structures is applied to achieve the passive supply mechanism. The flow is propelled by the surface forces of deformed CO 2 bubbles, generated as a reaction product during DMFC operation. This work focuses on studying the influence of channel geometry and surface properties on the capillary-induced liquid flow rates at various bubbly gas flow rates. Besides the aspect ratios and opening angles of the tapered channels, the static contact angle as well as the effect of contact angle hysteresis has been identified to significantly influence the liquid flow rates induced by capillary forces at the bubble menisci. Applying the novel concept, we show that the liquid flow rates are up to thirteen times higher than the methanol oxidation reaction on the anode requires. Experimental results are presented that demonstrate the continuous passive operation of a DMFC for more than 15 h

    Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    Get PDF
    The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection

    An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell

    No full text
    The authors present an abiotically catalyzed glucose fuel cell and demonstrate its application as energy harvesting power source for a cardiac pacemaker. This is enabled by an optimized DC-DC converter operating at 40 % conversion efficiency, which surpasses commercial low-power DC-DC converters. The required fuel cell surface area can thus be reduced from about 125 cm2 to 18 cm2, which would allow for its direct integration onto the pacemaker casing

    Characterization of CRISPR/Cas9 RANKL knockout mesenchymal stem cell clones based on single-cell printing technology and Emulsion Coupling assay as a low-cellularity workflow for single-cell cloning.

    No full text
    The homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in these applications. Especially the incompatibility of protein detection technologies to confirm protein expression changes without a preconditional large-scale clonal expansion creates a gridlock in many applications. To ameliorate the characterization of engineered cells, we propose an improved workflow, including single-cell printing/isolation technology based on fluorescent properties with high yield, a genomic edit screen (Surveyor assay), mRNA RT-PCR assessing altered gene expression, and a versatile protein detection tool called emulsion-coupling to deliver a high-content, unified single-cell workflow. The workflow was exemplified by engineering and functionally validating RANKL knockout immortalized mesenchymal stem cells showing bone formation capacity of these cells. The resulting workflow is economical, without the requirement of large-scale clonal expansions of the cells with overall cloning efficiency above 30% of CRISPR/Cas9 edited cells. Nevertheless, as the single-cell clones are comprehensively characterized at an early, highly parallel phase of the development of cells including DNA, RNA, and protein levels, the workflow delivers a higher number of successfully edited cells for further characterization, lowering the chance of late failures in the development process

    Centrifugal Microfluidic Integration of 4-Plex ddPCR Demonstrated by the Quantification of Cancer-Associated Point Mutations

    No full text
    We present the centrifugal microfluidic implementation of a four-plex digital droplet polymerase chain reaction (ddPCR). The platform features 12 identical ddPCR units on a LabDisk cartridge, each capable of generating droplets with a diameter of 82.7 ± 9 µm. By investigating different oil–surfactant concentrations, we identified a robust process for droplet generation and stabilization. We observed high droplet stability during thermocycling and endpoint fluorescence imaging, as is required for ddPCRs. Furthermore, we introduce an automated process for four-color fluorescence imaging using a commercial cell analysis microscope, including a customized software pipeline for ddPCR image evaluation. The applicability of ddPCRs is demonstrated by the quantification of three cancer-associated KRAS point mutations (G12D, G12V and G12A) in a diagnostically relevant wild type DNA background. The four-plex assay showed high sensitivity (3.5–35 mutant DNA copies in 15,000 wild type DNA copies) and linear performance (R² = 0.99) across all targets in the LabDisk

    RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    No full text
    Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis
    corecore